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This work focuses on: 1) demographic problems arising from the growing human 
population of the Earth, and 2) on the quantitative estimates of the future growth 
of the Earth's population. We discuss the existing models of the global human 
population growth using a popular presentation level and without appealing to 
sophisticated mathematical language. Instead of proposing a new mathematical 
model of the population growth, we advance a new perspective for the mathe-
matical modeling: phase transitions which are well-know in physics. In particu-
lar, we demonstrate that the world's demographic transition is actually a phase 
transition that has been affecting all aspects of our life. 
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Introduction 
A. Empirical Models 
The human population of the Earth, NE, attracted much attention after publication of the 
seminal work of Malthus who realized that it should exhibit the unlimited exponential 
growth:  
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The fears were partially dispersed by Verhulst who introduced the logistic equation,  
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to account for the population dynamics of closed communities. Here, r is the growth rate and 
K is the carrying capacity. This equation accounts fairly well for the growth of small com-
munities but it fails to describe the long-time dynamics of the human population of the Earth.  

As it was shown in the seminal work of von Foerster et al. (von Foerster, Mora, and 
Amiot 1960), the available to them data could be fairly well described by the empirical 
dependence 
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where  ≈ 1, C = 1.8 1011, and tc = 2026. The corresponding growth rate is: 
                                                           
 This article was first published in the almanac History and Mathematics: Processes and Models of Global Dynamics 

(edited by Leonid Grinin, Peter Herrmann, Andrey Korotayev, and Arno Tausch). Volgograd: Uchitel, 2010, 
pp. 188–204. 
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The most striking feature of Eqs 3, 4 is the divergence of NE and dNE/dt at finite time tc. 
This indicates that the above equations are inappropriate in the vicinity of tc. Indeed, since 
1960, the global human population growth has been deviating from the hyperbolic depend-
ence indicated by the Eqs 3, 4; in particular, the growth rate NE

–1dNE/dt achieved its maxi-
mum value of ~ 2.1 % in 1962 and then decreased steadily. This prompted the search for the 
functions that approximate the hyperbolic dependence given by Eqs 3, 4 before 1960 and re-
place them by smoother dependences after 1960. Several empirically found replacements 
have been suggested, including hypergeometric (Koronovskii 2000), overlay of several ex-
ponential or logistic curves (Hanson 1998), hyperexponential (Varfolomeev and Gurevich 
2001), delayed logistic curves (Haberl and Aubauer 1992; Yukalov, Yukalova, and Sor-
nette 2009), and others. The most insightful empirical approach was suggested by Kapitza 
(1996) who modified the Eq. 3 as follows: 
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Here, τ is a microscopic time scale for which Kapitza took the lifespan of a generation,  
~ 45 years. This modification captures the maximum in the relative growth rate and as-
sumes that the human population eventually comes to saturation. The subsequent studies 
sought to justify this empirical approach.  

B. Mathematical Models 

Models considering the carrying capacity of the Earth 
In order to understand the future trends of the global human population growth, several 
non-empirical mathematical models have been developed. These models aimed to derive 
Eqs 3, 4 from the ‘first principles’. This approach implies that Eqs 3, 4 are consequences 
of some plausible scenario while the parameters of these equations are still empirical. 
Most of such models (Artzrouni and Komlos 1985; Cohen 1995; Kremer 1993; Komlos 
and Nefedov 2002; Podlazov 2004; Galor and Moav 2001; Korotayev, Malkov, and Khal-
tourina 2006) quantified the verbal approach of Boserup, Simon, Jones, etc. who attributed 
the accelerating growth of the human population of the Earth, NE, to positive feedback be-
tween the population size and the Earth's carrying capacity, KE. Then, in addition to Eq. 2 
which accounts for the fast growth of the world population, these models introduced an 
additional equation that accounts for the slow dynamics of the population growth resulting 
from the gradual increase of the carrying capacity:  
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The coefficient γ quantifies the rate with which the human race expands the carrying ca-
pacity of the Earth. In such a way, these models assume two rates of the population 
growth. The fast rate, as derived from Eq. 2, is N–1dN/dt ~ r; while the slow rate, as de-
rived from the Eq. 6, is K–1dK/dt ~ γN. As far as r >> γN the instantaneous value of the 
population size is N ≈ K (see Eq. 2, the index E has been omitted). Then Eq. 6 reduces to  

2N
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This equation describes an autocatalytic process and its solution is given by Eq. 3, where 
C = 1/γ, tc = ti + 1/γNi and ti, Ni are initial conditions. Upon approaching tc, the population 
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size N increases and the distinction between the slow and fast dynamics eventually disap-
pears. In the limit γN >> r, the Eqs 2, 6 yield exponential population growth, N ~ ert. 

At present we do not know whether the human population will come to saturation in 
future or will grow continuously, although we want to believe that its growth will be 
somehow limited. The Kapitza's conjecture consists in replacing the Eq. 7 by the empirical 
equation 
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that describes accelerating and then decelerating population growth, whereas the popula-
tion size is eventually stabilized at Ninfty = r/γ. Eq. 8 describes the dynamic crossover. It 
operates with the minimal number of parameters: r and γ, and it is mathematically appeal-
ing. However, this equation cannot be easily justified and the reasons for the maximum of 
the growth rate and for the stabilization of the population size remain obscure.  

Models based on the Gross Domestic Product-GDP 
The carrying capacity, being an important parameter of the demographic models, can not be 
measured directly. The model that does not consider explicitly the carrying capacity was de-
veloped by Kremer (1993) who considered the gross domestic product, GDP = N(S + m), as 
the key parameter that determines the slow dynamics of the population growth. Here, N is 
the population size, m is the subsistence level, and S is the surplus product. Kremer related 
the GDP to the level of technological development T as follows: GDP ~ N1T2, where 
1,2 are the exponents that should be found empirically. In fact, Kremer put onto quantita-
tive language the verbal approach that had been developed earlier by Kuznets, Boserup, 
Jones, etc. The key assumption of the Kremer's model is that the growth of GDP is spurred 
by the technology growth.  

The original model developed by Kremer is static while Korotayev, Malkov and Khal-
tourina (2006) developed a family of dynamic models basing on Kremer's ideas. In the 
framework of these models, the dynamic variable that quantifies the technological devel-
opment is the surplus product, S. The simplest model considered by Korotayev, Malkov and 
Khaltourina consists of two equations: 
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with two empirical parameters: r is the rate of the population growth, and γ has now the 
meaning of the average creative ability of a person. The parameter m characterizes the scale 
of the surplus product S (it can be chosen to be equal to subsistence level) and it has been in-
troduced here to be consistent with the notation of the Eq. 1. In such a way, the Eq. 9 is the 
modification of the Eq. 1, while Eq. 10 captures the Kremer's idea. The relation to 
Kremer's work is even more evident if we notice that for 1 ~ 1 the definition of the tech-
nological level by Kremer: T ~ (GDP/N)1/2 is closely related to the definition of the sur-
plus product: (S + m) ~ GDP/N.  

The relation between N and S can be found by dividing Eq. 9 by Eq. 10. This yields  
N ~ S. In other words, Eqs 9, 10 describe the positive feedback between the surplus prod-
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uct and the population growth, on the one hand; and the positive feedback between the in-
creasing population and the growth of the surplus product, on the other hand.1 The solution 
of these equations exhibits finite-time singularity for N(t) and S(t).  

The field of applicability of Eqs 9, 10 is evident from their very structure: the right 
side looks as if it were the first term of the power series in the small parameter S/m. In 
other words, Eqs 9, 10 assume that S/m << 1, that is they should describe the period before 
1870 when S/m = 1. One can go beyond this approximation and modify the Eqs 9, 10 to 
extend their applicability range above the year 1870. Indeed, if we assume that the surplus 
product goes to creation of new working places, the relation of carrying capacity to surplus 
product is especially simple: K = GDP/m = N(S/m + 1). We replace Eq. 9 by the logistic 
equation Eq. 2, where K has been expressed through S and find 
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This equation introduces negative feedback between the population growth and the grow-
ing population. This has some stabilizing effect and consequently, the solution of Eqs 10, 
11 does not diverge. In the long run, the growth rate of N comes to saturation, while the 
growth rate of S is unlimited. The relation between N and S can be found by dividing  

Eq. 10 by Eq. 11. This yields 
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where N0 = const. In what follows we analyze the relative growth rates: rN = dN/dt : N and  
rS = dS/dt : S and compare them to the prediction of Eqs 10–12.  

Fig. 1 shows that the relation between N and S is superlinear and is fairly well de-
scribed by Eq. 12 with N0 = 1.65 · 109, the agreement breaks only for N > 3 · 109 (this cor-
responds to years 1960–1970).  

Fig. 2 shows that the human population growth rate linearly increases with N, 
achieves its maximum value of rN

max = 0.021 at N ≈ 3 109 and then starts to decrease. 
Equation 11 correctly predicts dynamics of rN at N < 2 · 109 and deviates from the ac-
tual data at higher N. 

                                                           
1 For negative S, Eq. 10 leads to a paradoxical conclusion. While Eq. 9 predicts population decline for negative S (that 

is quite understandable), the Eq. 10 predicts that if S turned out to be negative, then it will continue to be negative, in 
other words S = 0 is the unstable point. Following this interpretation, the parameter γ characterizes the creativity of a per-
son aimed towards both constructive and destructive goals! In other words, Eq. 10 implies that if some part of humanity 
started a destructive activity, it will pursue it until complete self-destruction. Our understanding of the human behavior 
would have produced the following equation: dS/dt = γ N(S + m). Here, if S acquires small negative value (for example, 
as a result of some environmental fluctuation), then S + m is still positive and the creativity of the humanity brings S 
back to be positive. Only for high enough fluctuation, such that S + m < 0 (as if it were a World war), the inclination to 
self-destruction finds its realization. However, the actual data are in better agreement with Eq. 10. 
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Fig. 1. Relation between the surplus product S/m and the World human population 
N in the same year  
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Notes: The circles show the data taken from the US Census database, Maddison (2001), Kremer (1993). 
The subsistence level is m = 440$ USD. The dashed line is the prediction of Eq. 12 with N0 = 1.65 · 109. 
The inset shows the same data in the log-log scale. 

Fig. 2. World population growth rate, rN = dN/dt : N  
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Notes: The circles show the data taken from the US Census database, Maddison (2001), Kremer (1993). 
The dashed line is the prediction of Eq. 11 with N0 = 1.65 109 and r = 0.013. The inset shows the same 
data in the log-log scale. 

Fig. 3 shows that the World surplus product growth rate linearly increases with N, 
achieves its maximum value of rS

max = 0.04 at N ≈ 3 · 109 and then starts to decrease. 
Equation 10 correctly predicts dynamics of rS at N < 2 · 109 and deviates from the actual 
data at higher N. We conclude that the Eqs 10, 11 extend the range of applicability of the 
Korotayev, Malkov, and Khaltourina model from the year ~1870 to the year ~1960. Since 
no new parameters/variables have been introduced, this extension belongs to the same 
family of models. 
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Fig. 3.  World surplus product growth rate, rS=dS/dt : S 
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Notes: The circles show the data taken from Maddison (2001). The subsistence level is m = 440$ USD.  
The data were averaged over the five-year interval. The dashed line shows prediction of Eq. 10 with  
N0 = 1.65 · 109. 

Fig. 4 shows the population growth rate rN and the surplus product growth rate rS versus 
surplus product, S/m. Both rN and rS grow with S, achieve the maximum at S/m ~ 5−6 (this 
corresponds to N ≈ 3 · 109) and then decrease. The model correctly predicts initial increase 
of rN and rS with S (that corresponds to S/m < 1) while pronounced deviations from the 
model occur for S/m > 2. 

Fig. 4.  Comparison of the world population and the world surplus product growth 
rates  
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Notes: The data for rS were averaged over the five-year interval. Notice that maximum rN and maximum 
rS are achieved simultaneously, at the same value of S/m. 

Models accounting for the demographic transition 
The maximum in the population growth rate (Fig. 2) is usually associated with the ‘demo-
graphic transition’ (Chesnais 1992) which results from the decrease of mortality rate and 
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the subsequent birth rate decrease. Detailed statistical studies indicate that the reason for 
decreasing population growth in developed countries nowadays is the declining birth rate 
(Ibid.) whereas there is a strong anticorrelation between the level of female education and 
fertility. Korotayev, Khaltourina and Malkov captured this by introducing an additional 
dynamic variable: the fraction of literate population, l. They modified the Malthus equa-
tion (Eq. 9) to account for the negative feedback between the population growth and the 
literacy level: 
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The dynamics of the surplus product remained the same (Eq. 10) while the dynamics of l 
has been described by the following equation: 
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where a is a new empirical parameter and S is dimensionless (it can be measured in the 
units of subsistence level, m). When the initial educational level of the population is low, 
this model predicts accelerating growth of N, S, and l. Eventually, when l comes to satura-
tion, N also achieves saturation while S does not saturate and grows exponentially. There-
fore, this extended model captures the non-monotonous dependence of rN on N (Fig. 2) but 
fails to account for the non-monotonous dependence of rS on N (Fig. 3). 

Critical assessment of the above models 
The common feature of all previously discussed models is that they describe the growth of 
the world human population growth, GDP, surplus product, literacy, etc. by using ordinary 
differential equations containing first-order time derivatives. In the framework of these mod-
els, the non-monotonous time dependence of the growth rate (demographic transition) results 
from the dynamic crossover, that is at all times there are several factors affecting population 
growth and these factors operate simultaneously. With a small population number, N < 3 · 109, 
one factor wins and the growth rate increases with N; while for a high population number, 
N > 3 · 109, another factor wins and the growth rate decreases with N. When N ≈ 3 109, the 
gradual transition from one regime to another occurs.  

Several features in real data challenge this picture. First, the transition from increasing 
to a decreasing trend in rN versus N dependence is very sharp (Fig. 2). Second, it is not clear 
why transitions in rN and rS occur simultaneously in 1960–1970, and at the same value of 
N ≈ 3 ·109 (Fig. 4). Other parameters also undergo especially fast change in the same time 
period – 1960–1970; these include age structure of the population, the level of literacy, ur-
banization (Korotayev, Malkov, and Khaltourina 2006), financial indices (Johansen and 
Sornette 2001), etc. All these features are more naturally accounted for from another per-
spective – phase transition. While the commonly accepted approaches (Korotayev, 
Malkov, and Khaltourina 2006) focus on time-dependent, dynamic properties of the popu-
lation growth, the phase transition approach focuses on how demographic and economic 
variables depend on control parameters such as population or surplus product.  

Is Demographic Transition a Phase Transition? 

The notion of phase transition has been developed in the context of condensed matter 
physics. In the system of many interacting particles/agents, when the control parameter 



Globalistics and Globalization Studies 166 

(temperature, pressure, density, etc.) varies, the system can progress abruptly from the dis-
ordered phase where the radius of correlations is finite, to the ordered phase, which is 
characterized by the long-range order. This situation can be usually described using the 
order parameter which is zero in the disordered phase and non-zero in the ordered phase. 
The properties of the system as a function of the control parameter are frequently non-
analytic at the transition point. In particular, the correlation length diverges upon ap-
proaching the phase transition and becomes infinite in the ordered phase. Divergence of 
many physical properties at the phase transition is related to the divergence of the correla-
tion length. The dynamic properties also undergo dramatic changes and the fluctuations 
grow on the both sides of the phase transition (Stanley 1999). The difference between 
the phase transition and crossover scenario is in the following: for the former, the or-
dered state is characterized by an emerging new property – the order parameter (which 
was absent in the disordered state); while for the latter scenario all factors were present 
in both states. 

Phase transitions in social systems such as financial markets, traffic flow, etc., were 
noticed long ago (Montroll 1978; Montroll and Badger 1975; Stauffer and Solomon 2009). 
The extrapolated divergence of the human population growth rate in 2026–2040 has been 
also interpreted as some kind of transition (von Foerster, Mora, and Amiot 1960; Koro-
tayev, Malkov, and Khaltourina 2006; Johansen and Sornette 2001). However, the growth 
rate divergence appears only in the ‘mean-field’ models. More realistic models lift the di-
vergence and yield earlier date for the population growth to switch from one regime to an-
other. This probably implies that the phase transition has already taken place in 1960–1970, 
rather than to occur in 2026–2040. Then the demographic transition of 1960–1970 is not  
a purely demographic phenomenon but is a signature of the global phase transition that has 
been affecting all aspects of human life.  

It is instructive to discuss the properties of this transition in the context of such 
a generic phase transition as lattice percolation (Stauffer and Aharoni 1994). Here, the dis-
ordered state contains disconnected finite-size clusters while the ordered state is character-
ized by the appearance of the infinite cluster that ensures connectivity of the whole sys-
tem. This analogy prompts us to consider globalization as a hallmark of the phase transi-
tion of 1960–1970. One of the most prominent aspects of globalization is the economic in-
tegration. We consider a very crude indicator of the economic integration – the growth of 
the European Union, in particular we focus on η = NEU / NEurope – the fraction of the 
European population in the states belonging to European Union or to its predecessors such 
as the Common Market. 

Fig. 5 shows dynamics of η. Amusingly, this very simple measure of the European in-
tegration mimics the World Globalization index as determined by Dreher (2006) using 
weighted economic, political and cultural indicators. Fig. 5 shows that the onset of Euro-
pean integration took place in the same period – in 1960–1970 – when the global demo-
graphic transition occurred. Serrano (2007) came earlier to similar conclusions by consid-
ering the historical dynamics of bilateral trade balance. Dependence η (t) is very similar to 
the behavior of order parameter at the percolation phase transition (Stauffer and Aharoni 
1994). 
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Fig. 5.  Dynamics of the European Union growth, η = NEU / NEUROPE and of the KOF 
globalization index 
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Notes: The circles show NEU , the population in the states that belong to the European Union or to its 
predecessors (Common Market), while NEUROPE is the total European population. The dashed line shows 
KOF globalization index (Dreher 2006). Note abrupt growth of η around 1960 which is followed by 
slower steady growth afterwards. This reminds a characteristic behavior of the order parameter at phase 
transitions. 

If we adopt the hypothesis of the humanity as a system of interacting agents that un-
dergoes instability/phase transition with a peak in 1960–1970, this raises many interesting 
questions that prompt extensive scientific research.  

 What is the nature of the phase transition? What is the difference between two 
phases? Probably, in the years preceding 1960–1970, the most part of the surplus prod-
uct eventually went to the population growth. However, after 1960–1970 the surplus 
product was spent more on the increase of the quality of living, i.e. it was channeled to the 
increase of subsistence level.  

 What is the proper control parameter that drives this phase transition? Is it the total 
human population, or average population density, or surplus product, or something else? 

 What is the order parameter? Globalization index? Another candidate for the order 
parameter could be some measure of information since the appearance of the global in-
formation network (Kapitza 1996; Dolgonosov and Naidenov 2006) after 1970 was very 
prominent. 

 Which parameters diverge upon approaching the transition? What are the critical in-
dices? Besides urbanization and literacy that were studied by Korotayev, Malkov and 
Khaltourina (2006) it would be interesting to consider the historical dynamics of the war-
fare indicators such as the weapon range, the power of the explosives, etc.  

 How one can define the correlation length? The possible candidates could be the av-
erage city population (Chase-Dunn and Manning 2002) or the average size of a polity 
(Taagepera 1997). 

 What is the statistics of fluctuations at this transition? It is well-known that the fluc-
tuations grow upon approaching the phase transition from both sides. The growth of fluc-
tuations in the context of global population growth has been already noticed (Johansen and 
Sornette 2001). In this context, it would be especially interesting to consider the timeline 
of the financial crises. 
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 What is the behavior of the dynamic properties of the global human population at 
the transition? The analog of conductivity of the percolating network would be the signal 
propagation rate or the rate of adoption of technological innovations. How did these pa-
rameters change through historical time? 

Spatially-inhomogeneous and discrete models 
Our capability to introduce innovations that enlarge carrying capacity of the Earth (auto-
catalycity) translates into human population dynamics equations as a positive feedback. It 
is well known that population dynamics that includes positive feedback and diffusion 
leads to strongly spatially-inhomogeneous population pattern (for example, desert oases, 
vegetation patches in arid zones [Shnerb, Sarah et al. 2003], etc.) and favors agglomera-
tion. Indeed, the increasing economic returns and increasing innovation rate arising from 
the population agglomeration in cities is well documented (Bettencourt et al. 2007). This 
means that in the context of the human population dynamics, the spatial heterogeneity by 
itself has autocatalytic properties. Therefore, the models of the human population dy-
namics should properly address the spatial dimension.  

Note also that the previously discussed models were based on ordinary differential 
equations, as it is commonly accepted in population dynamics (Turchin 2001), and took 
into account neither spatial distribution of the population nor the discrete nature of hu-
mans. Very often when the continuum equations describing population dynamics assume 
spatially homogeneous population and predict a very slow growth or even population ex-
tinction; the individuals self-organize in spatio-temporally localized adaptive patches 
which ensure their survival and development. In other words, continuum differential equa-
tions may fail in predicting the population dynamics of the discrete proliferating agents 
(Shnerb, Louzoun et al. 2000). An interesting example of such approach is the recent study 
of the economics development in Poland after 1990 (Yaari et al. 2008). Yaari et al. 
showed that the economics growth was led by few singular ‘growth centers’ that were as-
sociated with the University centers. Probably, this shows in a different way the ultimate 
relation between the education level/literacy and the human population dynamics (see 
Korotayev, Malkov, and Khaltourina 2006). All this calls for new generation of the models 
describing the world human population growth. These should be discrete and spatially-
inhomogeneous models. 

Physical Meaning of the Parameters of the Dynamic Models 
We consider here a different subject that emerges in relation to dynamical models of the 
human population growth. Eqs 10, 11 contain two empirical parameters: r, γ that should be 
somehow related to the human nature. The meaning of the parameter r is more or less 
clear – it is the relaxation rate of the population to sudden changes. It is determined by the 
difference in birth rate and mortality and, to the best of our knowledge, does not exceed 
rrecord = 0.14. Comparison of the growth rate to the models (Fig. 2) yields r = 0.01 ~ 0.1 rrecord 

that is quite reasonable. Note, that r can be measured from the transient phenomena, for 
example, how fast the population size recovers from dramatic disaster such as WWII. This 
yields r ~ 0.02–0.03 that is comparable to r = 0.013 determined from the Fig. 2. 

The meaning of the parameter γ is more elusive. Kapitza (1996) suggested that  
γ = 1/rU2 where U ≈ 67,000 is the coherent population unit. This implies a paradoxical 
conclusion that any coherent population unit consisting of ~ 67,000 individuals will de-
velop into civilization consisting of billions of individuals. To get more clear insight into 
this paradox we compare the humans to the beavers. Besides their short lifespan (16–
20 years), the beavers remind humans in several aspects: they are monogamous, they live 
in colonies, and most important – by building the dams they shape the landscape according 
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to their needs, i.e. they can expand the carrying capacity. However, the difference between 
the ‘civilization’ of beavers and human civilization is too obvious. Hence, we seek for the 
deeper relation between the parameter γ and the human nature.  

Korotayev, Malkov and Khaltourina (2006) related γ to the average creativity of a per-
son. To elaborate further on this subject we assume the following scenario. Human popu-
lation N adjusts to the current carrying capacity very fast. Carrying capacity K slowly in-
creases due to technological innovations. So far, the spreading of the technological innova-
tions has been the bottleneck that determined the dynamics of the carrying capacity 
growth. Eq. 6 can be recast as follows: 

t
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 ,         (15) 

where Nt is the total number of humans lived on the Earth till time t, and τ is the average 
lifetime of the generation. The solution of Eq. 15 is K = Kiexp(γτNt) where Ki is the carry-
ing capacity at time ti and Nt is the total number of humans that lived on Earth between ti 
and t. Then 
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For the hyperbolic population growth (Eqs 3, 4), the total number of people lived between 
ti and t depends logarithmically on time:  
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The technological innovations are created by people and they are accumulating. This 
means that the carrying capacity at time t is the result of activity of all people that lived be-
fore (Cohen 1995). Therefore, the parameter γτ characterizes the average contribution of 
an individual to the expansion of the carrying capacity of the Earth. This may be inter-
preted in two ways. 

1. Each individual contributes to the growth of the Earth carrying capacity in such 
a way that the average personal contribution, ΔK = γτK. 

2. The carrying capacity increases by abrupt steps, ΔK ~ K, due to stepwise develop-
ment of science (Turchin 1977) and to scientific/technological revolutions (Kuhn 1962). 
Then γτ is the probability/frequency of these technological revolutions. These revolutions 
are rare events that trigger a series of smaller innovations which become embodied long 
before the next revolution occurs. According to this interpretation, the parameter γτ is the 
probability that an inventor or group of inventors makes a major technologi-
cal/social/administrative breakthrough. According to this scenario, the human population 
growth is a series of logistic curves, each corresponding to a technological revolution. The 
quantity N0 ≈ 1/γτ (see Eq. 12) has the meaning of the number of people lived that ensure 
one major technological revolution. 

We believe that the second scenario is more adequate. It has several implications: 
 Log-periodic oscillations around hyperbolic law given by Eq. 3 which were noticed 

by several groups (Korotayev, Malkov, and Khaltourina 2006; Johansen and Sornette 
2001) and attributed to cycles, correspond to major technological revolutions.  

 The current demographic transition and deviation from the hyperbolic law appear 
when the technological revolutions occur so frequently that the full potential of the preced-
ing revolution has not been fully realized before the next one occurs.  

 While the motivation for technological innovations so far was the drive towards 
increasing carrying capacity, now something changed and the stream of innovations re-
sults in increased quality of living rather than in increasing number of living persons. 
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(This is probably equivalent to increasing subsistence level m.) Hence, the population 
growth is not so fast. 

 Is it possible that the very small probability γτ ≈ 10–9 is somehow related to the fre-
quency of genetic mutations which is also exceedingly small (10–7–10–8)?  

 The observation that bigger populations develop fast, while isolated continents, ar-
chipelagos and islands develop slower may be explained quite naturally. This should be re-
lated to the probability of appearance of rare events and innovators, and to the discreteness 
of the population. 

The link between the above description and that of Kapitza (1996) is provided by  
the discrete character of humans. Indeed, to initiate the positive feedback loop given by Eq. 6 
for the initial group of hominids to expand, it should create at least one working place in the 
lifetime of one generation. This brings us to the minimal group size of Ni ~ (γτ)–1/2 ~ 67,000.  

Another consequence of the approach based on the number of people lived in the cer-
tain time interval, is the meaning of ‘historical time’. It has been already noticed (Kapitza 
1996) that with respect to the frequency of historical events, the natural time scale is loga-
rithmic rather than linear. Since the total number of humans that lived on the Earth also 
depends logarithmically on time (Eq. 17), then Nt seems to be the ‘internal clock’ of hu-
manity. This conjecture provides the basis for quantitative comparison of the historical de-
velopment of different isolated communities. According to this interpretation, the internal 
clock of a community is the total number of people that ever lived in this community. 
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