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The present article demonstrates that changes in biodiversity through the Phan-
erozoic correlate with a hyperbolic model (widely used in demography and mac-
rosociology) much more strongly than with exponential and logistic models (tra-
ditionally used in population biology and extensively applied to fossil biodiversi-
ty as well). The latter models imply that changes in diversity are guided by 
a first-order positive feedback (more ancestors – more descendants) and/or a 
negative feedback arising from resource limitation. The hyperbolic model im-
plies a second-order positive feedback. The authors demonstrate that the hyper-
bolic pattern of the world population growth arises from a second-order positive 
feedback between the population size and the rate of technological growth (this 
can also be identified with the collective learning mechanism). The feedback be-
tween the diversity and community structure complexity can also contribute to 
the hyperbolic character of biodiversity. This suggests that some mechanisms 
vaguely resembling the collective learning might have operated throughout the 
biological phase of Big History. Our findings suggest that we can trace rather 
similar macropatterns within both the biological and social phases of Big Histo-
ry which one can describe in a rather accurate way with very simple mathemati-
cal models. 

Keywords: biological phase of Big History, social phase of Big History, mathe-
matical modeling, collective learning, positive feedback, biodiversity, demogra-
phy, sociology, paleontology, geology, hyperbolic growth. 

In 2005, in the town of Dubna, near Moscow, at what seems to have been the first ever 
international conference devoted specifically to Big History studies, the two authors of the 
present article – sociologist/anthropologist Andrey Korotayev and biologist/paleontologist 
Alexander Markov – one after another demonstrated two diagrams.1 One of those dia-
grams illustrated the dynamics of the population of China between 700 BCE and 1851 CE, 
the other illustrated the dynamics of marine Phanerozoic biodiversity during the last 542 
million years (see Fig. 1):  

                                                           

 This research has been supported by the Russian Foundation for Basic Research (Project # 13-06-00501).  

1 We would like to emphasize that we saw each other at that session for the first time, so we had no chance to arrange 
in advance the demonstration of those two diagrams.  
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a) 

 
b) 

Fig. 1. Similarity of the dynamics of Phanerozoic marine biodiversity and long-term 
population dynamics of China: а) – Population dynamics of China (million 
people, 700 BCE – 1851 CE), based on estimates in Korotayev, Malkov, 
and Khaltourina (2006b: 47–88); b) – Global change in marine biodiversity 
(number of genera, N) through the Phanerozoic based on empirical data 
surveyed in Markov and Korotayev (2007a) 

Nevertheless, one can hardly ignore the striking similarity between two diagrams depicting 
the development of rather different systems (human population, on the one hand, and bio-
ta, on the other) at different time scales (hundreds of years, on the one hand, and millions 
of years, on the other) studied by different sciences (Historical Demography, on the one 
hand, and Paleontology, on the other) using different sources (demographic estimates, on 
the one hand, and paleontological chronicles, on the other hand). What are the causes of 
this similarity in the development dynamics of rather different systems?  
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*   *   *  
In 1960, von Foerster, Mora, and Amiot published a striking discovery in the journal 

Science. They showed that between 1 and 1958 CE the world's population (N) dynamics 
can be described in an extremely accurate way with an astonishingly simple equation:2  

tt
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N t 


0

, (1) 

where Nt is the world population at time t, and C and t0 are constants, with t0 correspond-
ing to an absolute limit (‘singularity’ point) at which N would become infinite.  

Of course, von Foerster and his colleagues did not imply that one day the world popu-
lation would actually become infinite. The real implication was that prior to 1960 the 
world population growth for many centuries had followed a pattern which was about to 
come to an end and to transform into a radically different pattern. Note that this prediction 
started to come true only a few years after the ‘Doomsday’ paper had been published, be-
cause after the early 1970s the World System growth in general (and world population 
growth in particular) began to diverge more and more from the blow-up regime, and now 
it is not hyperbolic any more with its pattern being closer to a logistic one (see, e.g., Koro-
tayev, Malkov, and Khaltourina 2006a, where we present a compact mathematical model 
that describes both the hyperbolic development of the World System in the period prior to 
the early 1970s, and its withdrawal from the blow-up regime in the subsequent period; see 
also Korotayev 2009).  

Parameter t0 was estimated by von Foerster and his colleagues as 2026.87, which cor-
responded to November 13, 2006; this allowed them to give their article an attractive and 
remarkable title – ‘Doomsday: Friday, 13 November, A.D. 2026’.  

The overall correlation between the curve generated by the von Foerster equation and 
the most detailed series of empirical estimates looks as follows (see Fig. 2).  

                                                           
2 To be exact, the equation proposed by von Foerster and his colleagues looked as follows: 

99.0
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as von Hoerner (1975) and Kapitza (1999) showed, it can be simplified as 
tt
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.  
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Fig. 2. Correlation between empirical estimates of world population (in millions, AD 
1000–1970) and the curve generated by the von Foerster equation  

Note: black markers correspond to empirical estimates of the world population by McEvedy and Jones 
(1978) for the interval between 1000 and 1950 and the U.S. Bureau of the Census (2014) for 
1950–1970. The grey curve has been generated by the von Foerster equation (1). 

The formal characteristics are as follows: R = 0.998; R2 = 0.996; p = 9.4 × 10-17 ≈ 1 × 10–16. 
For readers unfamiliar with mathematical statistics we can explain that R2 can be regarded 
as a measure of the fit between the dynamics generated by a mathematical model and the 
empirically observed situation, and can be interpreted as the proportion of the variation 
accounted for by the respective equation. Note that 0.996 also can be expressed as 99.6 per 
cent.3 Thus, the von Foerster equation accounts for an astonishing 99.6 per cent of all the 
macrovariation in the world population, from 1000 CE through 1970, as estimated by 
McEvedy and Jones (1978) and the U.S. Bureau of the Census (2014).4  

Note also that the empirical estimates of world population align in an extremely accu-
rate way along the hyperbolic curve, which convincingly justifies the designation of the 
pre-1970s world population growth pattern as ‘hyperbolic’.  

To start with, the von Foerster equation 
tt

C
N t 


0

 is just a solution of the following 

differential equation (see, e.g., Korotayev, Malkov, Khaltourina 2006a: 119–20):   

                                                           
3 The second characteristic (p, standing for ‘probability’) is a measure of the correlation's statistical significance. A bit 

counter-intuitively, the lower the value of p, the higher the statistical significance of the respective correlation. This is 
because p indicates the probability that the observed correlation could be accounted solely by chance. Thus, p = 0.99  
indicates an extremely low statistical significance, as it means that there are 99 chances out of 100 that the observed 
correlation is the result of a coincidence, and, thus, we can be quite confident that there is no systematic relationship 
(at least, of the kind that we study) between the two respective variables. On the other hand, p = 1 × 10–16 indicates an 
extremely high statistical significance for the correlation, as it means that there is only one chance out of 
10000000000000000 that the observed correlation is the result of pure coincidence (in fact, a correlation is usually 
considered as statistically significant with p < 0.05).  

4 In fact, with slightly different parameters (С = 164890.45; t0 = 2014) the fit (R2) between the dynamics generated by 
the von Foerster equation and the macrovariation of world population for CE 1000–1970 as estimated by McEvedy 
and Jones (1978) and the U.S. Bureau of the Census (2014) reaches 0.9992 (99.92 per cent), whereas for 500 BCE – 
1970 CE this fit increases to 0.9993 (99.93 per cent) (with the following parameters: С = 171042.78; t0 = 2016).  
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This equation can be also written as:  
2aN

dt

dN
 , (3)

where 
C

a
1

 .  

What is the meaning of this mathematical expression, 2aN
dt

dN
 ? In our case, dN/dt 

denotes an absolute population growth rate at a certain moment of time. Thus, this equa-
tion shows that at any moment of time an absolute population growth rate should be pro-
portional to the square of population at this moment. 

Note that this significantly demystifies the problem of the world population hyperbolic 
growth. Now to explain this hyperbolic growth, we should just explain why for many mil-
lennia the absolute rate of world population growth tended to be proportional to the square 
of population.  

The main mathematical models of the hyperbolic pattern of the world's population 
growth (Taagapera 1976, 1979; Kremer 1993; Cohen 1995; Podlazov 2004; Tsirel 2004; 
Korotayev 2005, 2007, 2008, 2009, 2012; Korotayev, Malkov, and Khaltourina 2006a: 
21–36; Khaltourina, Malkov, and Korotayev 2006; Golosovsky 2010; Korotayev and 
Malkov 2012) are based on the following two assumptions:  

1) ‘the Malthusian (1978 [1798]) assumption that population is limited by the availa-
ble technology, so that the growth rate of population is proportional to the growth rate of 
technology’ (Kremer 1993: 681–682).5 This statement seems rather convincing. Indeed, 
throughout most of human history the world population was limited by the technologically 
determined ceiling of land carrying capacity. For example, with foraging subsistence tech-
nologies the Earth could hardly support more than 8 million people, because the amount of 
naturally available useful biomass on the planet is limited, and the world population could 
overgrow this limit only when people started to apply various means to artificially increase 
the amount of available biomass, that is with a transition from foraging to food production. 
However, the extensive agriculture can only support a limited number of people, and world 
population further growth became possible only with the intensification of agriculture and 
other technological improvements (see, e.g., Turchin 2003; Korotayev, Malkov, and Khalto-
urina 2006a, 2006b; Korotayev and Khaltourina 2006).  

However, it is well known that the technological level is not a constant, but a variable 
(see, e.g., Grinin 2007a, 2007b, 2012). And in order to describe its dynamics the second 
basic assumption is employed:  

2) ‘High population spurs technological change because it increases the number of po-
tential inventors…6 In a larger population there will be proportionally more people lucky 
or smart enough to come up with new ideas’ (Kremer 1993: 685), thus, ‘the growth rate of 

                                                           
5 In addition to this, the absolute growth rate is proportional to the population number – with a given relative growth 

rate a larger population will increase more in absolute numbers than a smaller one.  
6 ‘This implication flows naturally from the non-rivalry of technology… The cost of inventing a new technology is 

independent of the number of people who use it. Thus, holding constant the share of resources devoted to research, 
an increase in population leads to an increase in the probability of technological change’ (Kremer 1993: 681); note 
that in the framework proposed by David Christian (2005) this corresponds precisely to the pattern of collective 
learning. 
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technology is proportional to total population’.7 In fact, here Kremer uses the main as-
sumption of the Endogenous Technological Growth theory (Kuznets 1960; Grossman and 
Helpman 1991; Aghion and Howitt 1998; Simon 1977, 2000; Komlos and Nefedov 2002; 
Jones 1995, 2005, etc.). To our knowledge, this supposition was first put forward by Si-
mon Kuznets (1960), so we will denote a corresponding type of dynamics as ‘Kuznetsian’, 
while the systems in which the ‘Kuznetsian’ population-technological dynamics combines 
with the ‘Malthusian’ demographic one will be denoted as ‘Malthusian-Kuznetsian’. In 
general, we find this assumption rather plausible – in fact, it is quite probable that, ceteris 
paribus, within a given period of time, a billion people will make approximately a thou-
sand times more inventions than a million people.  

This assumption was expressed by Kremer mathematically in the following way:  

                kNT
dt

dT
 . 

 
(4) 

Actually, this equation just says that the absolute technological growth rate at a given 
moment of time (dT/dt) is proportional to the technological level (T) observed at this mo-
ment (the wider is the technological base, the more inventions could be made on its basis), 
and, on the other hand, it is proportional to the population (N) (the larger the population, 
the larger the number of potential inventors).8 

The resultant models provide a rather convincing explanation of why throughout most of 
human history the world population followed the hyperbolic pattern with an absolute popula-
tion growth rate tending to be proportional to N2. For example, why would the growth of popu-
lation from, say, 10 million to 100 million, result in the hundredfold growth of dN/dt? The 
above mentioned models explain this rather convincingly. The point is that the growth of 
world population from ten to a hundred million implies that human subsistence technolo-
gies also grew approximately ten times (given that it will prove, after all, to be able to 
support a ten times larger population). On the other hand, the tenfold population growth 
also implies a tenfold growth of the number of potential inventors, and, consequently,  
a tenfold increase in a relative technological growth rate. Hence, the absolute technologi-
cal growth rate would grow 10 × 10 = 100 times (as Equation 4 shows that an order of 
magnitude larger number of people with an order of magnitude broader technological basis 
would likely make two orders of magnitude more inventions). And as throughout the Mal-
thusian epoch the world population (N) tended to the technologically determined carrying 
capacity ceiling of the Earth, we have good reason to expect that dN/dt will also grow just 
about 100 times.  

In fact, one can demonstrate (see, e.g., Korotayev, Malkov, and Khaltourina 2006a, 
2006b; Korotayev and Khaltourina 2006) that the hyperbolic pattern of the world's popula-
tion growth can be explained by the nonlinear second order positive feedback mechanism 
that was shown long ago to generate just the hyperbolic growth, known also as the ‘blow-
up regime’(see, e.g., Kurdyumov 1999). In our case this nonlinear second order positive 
feedback looks as follows: more people – more potential inventors – a faster technological 
growth – a faster growth of the Earth's carrying capacity – a faster population growth – 
with more people you also have more potential inventors – hence, faster technological 
growth, and so on (see Fig. 3).  

                                                           
7 Note that ‘the growth rate of technology’ means here the relative growth rate (i.e. the level to which technology will 

grow in a given unit of time in proportion to the level observed at the beginning of this period).  
8 Kremer did not test this hypothesis empirically in a direct way. Note, however, that our own empirical test of this 

hypothesis has supported it (see Korotayev, Malkov, Khaltourina 2006b: 141–146). 
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Fig. 3. Cognitive scheme of the nonlinear second order positive feedback between 
technological development and demographic growth 

Note that the relationship between technological development and demographic growth can-
not be analyzed through any simple cause-and-effect model, as we observe a true dynamic 
relationship between these two processes – each of them is both the cause and the effect of 
the other.  

Note also that the process discussed above should be identified with the process of col-
lective learning (on the notion of ‘collective learning’ see first of all Christian 2005: 146–
148; see also David Christian's and David Baker's contributions to the present volume). 
Respectively, the mathematical models of the World System development discussed in this 
article can be interpreted as mathematical models of the influence of collective learning on 
the global social evolution. Thus, a rather peculiar hyperbolic shape of the acceleration of 
the global development observed prior to the early 1970s may be regarded just as a prod-
uct of the global collective learning. Elsewhere we have also shown (Korotayev, Malkov, 
and Khaltourina 2006a: 34–66) that for the period prior to the 1970s the World System eco-
nomic and demographic macrodynamics driven by the above mentioned positive feedback 
loops can be described mathematically in a rather accurate way with the following extremely 
simple mathematical model:  

,aSN
dt

dN
                                                              (5) 

,bNS
dt

dS
                                                               (6) 

while the world GDP (G) can be calculated using the following equation:  
G = mN + SN, (7)

where G is the world GDP, N is population, and S is the produced surplus per capita, over 
the subsistence amount (m) that is minimally necessary to reproduce the population with a 
zero growth rate in a Malthusian system (thus, S = g – m, where g denotes per capita 
GDP); a and b are parameters. 

Note that the mathematical analysis of the basic model (not presented here) suggests 
that up to the 1970s the amount of S (per capita surplus produced at the given level of 
World System development) should be proportional, in the long run, to the World Sys-
tem's population: S = kN. Our statistical analysis of the available empirical data has con-
firmed this theoretical proportionality (Korotayev, Malkov, and Khaltourina 2006a: 49–
50). Thus, in the right-hand side of equation (6) S can be replaced with kN, and as a result 
we arrive at the following equation:  

2kaN
dt

dN
 . (3)
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As we remember, the solution of this type of differential equations is  

)( 0 tt

C
Nt


 ,  (1)

and this produces simply a hyperbolic curve.  
As, according to our model, S can be approximated as kN, its long-term dynamics can 

be approximated with the following equation:  

tt

kC
S




0

. 

Thus, the long-term dynamics of the most dynamic component of the world GDP, SN, ‘the world 
surplus product’, can be approximated as follows:  

 20

2

tt

kC
SN


 . (8)

Of course, this suggests that the long-term world GDP dynamics up to the early 1970s 
must be approximated better by a quadratic hyperbola than by a simple one; and, as we 
could see below (see Fig. 4), this approximation works very effectively indeed:  

 
Fig. 4. World GDP Dynamics, 1–1973 CE (in billions of 1990 international dollars, 

PPP): the fit between predictions of a quadratic-hyperbolic model and the 
observed data  

Note: R = .9993, R2 = .9986, p << .0001. The black markers correspond to Maddison's (2001) estimates 
(Maddison's estimates of the world per capita GDP for 1000 CE has been corrected on the basis of 
[Meliantsev 2004]). The grey solid line has been generated by the following equation:  

2)2006(

17749573.1

t
G


 . 

Thus, up to the 1970s the hyperbolic growth of the world population was accompanied by 
the quadratic-hyperbolic growth of the world GDP, just as our model suggests. Note that 
the hyperbolic growth of the world population and the quadratic-hyperbolic growth of the 
world GDP are tightly interconnected processes, actually two sides of the same coin, two 
dimensions of one process propelled by the nonlinear second order positive feedback loops 
between the technological development and demographic growth (see Fig. 5).  

200017501500125010007505002500

18000

16000

14000

12000

10000

8000

6000

4000

2000

0

predicted

observed



Korotayev and Markov • Modeling of Biological and Social Phases 327

 

Fig. 5. Cognitive Scheme of the Generation of Quadratic-Hyperbolic Trend of the 
World Economic Growth by the Nonlinear Second Order Positive Feedback 
between Technological Development and Demographic Growth 

We have also demonstrated (Korotayev, Malkov, and Khaltourina 2006a: 67–80) that the 
dynamics of the World System population's literacy (l) is rather accurately described by 
the following differential equation:  

where l is the proportion of the population that is literate, S is per capita surplus, and a is a 
constant. In fact, this is a version of the autocatalytic model. It has the following sense: the 
increasing literacy is proportional to the fraction of the population that is literate, l (potential 
teachers), to the fraction of the population that is illiterate, (1 – l) (potential pupils), and to 
the amount of per capita surplus S, since it can be used to support educational programs (in 
addition to this, S reflects the technological level T that implies, among other things, the level 
of development of educational technologies). Note that, from a mathematical point of view, 
Equation 9 can be regarded logistic where saturation is reached at literacy level l = 1, and S 
is responsible for the speed with which this level is approached.  

It is important to emphasize that with low values of l (which correspond to most part 
of human history except for the recent decades), the increasing rate of the world literacy 
generated by this model (against the background of hyperbolic growth of S) can be approx-
imated rather accurately as hyperbolic (see Fig. 6).  

                   ),1( laSl
dt

dl
  (9) 
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Fig. 6. World Literacy Dynamics, 1 – 1980 CE (%%): the fit between predictions of 

the hyperbolic model and the observed data  

Note: R = 0.997, R2 = 0.994, p << 0.0001. Black dots correspond to UNESCO/World Bank (2014) esti-
mates for the period after 1970, and to Meliantsev's (2004) estimates for the earlier period. The grey solid 
line has been generated by the following equation:  

2)2040(

3769.264

t
lt 
 . 

The best-fit values of parameters С (3769.264) and t0 (2040) have been calculated with the least squares 
method. 

The overall number of literate people is proportional both to the literacy level and to the 
overall population. As both of these variables experienced a hyperbolic growth until  
the 1960s/1970s, one has sufficient grounds to expect that until recently the overall num-
ber of literate people in the world (L)9 grew not just hyperbolically, but rather in a quadrat-
ic-hyperbolic way (as the world GDP did). Our empirical test has confirmed this – the 
quadratic-hyperbolic model describes the growth of the literate population of the planet 
with an extremely good fit indeed (see Fig. 7).  

                                                           
9 Since literacy appeared, almost all of the Earth's literate population has lived within the World System; hence, the 

literate population of the Earth and the literate population of the World System have been almost perfectly synony-
mous.  
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Fig. 7. World Literate Population Dynamics, 1–1980 CE (L, millions): the fit be-

tween predictions of the quadratic-hyperbolic model and the observed data 
Note: R = 0.9997, R2 = 0.9994, p << 0.0001. The black dots correspond to UNESCO/World Bank 

(2014) estimates for the period since 1970, and to Meliantsev's (2004) estimates for the earli-
er period; we have also taken into account the changes of age structure on the basis of UN 
Population Division (2014) data. The grey solid line has been generated by the following 
equation:  

2)2033(

4958551

t
Lt


 . 

The best-fit values of parameters С (4958551) and t0 (2033) have been calculated with the least 
squares method. 

Similar processes are observed with respect to world urbanization, whose macro dynamics 
appears to be described by the differential equation:  

)( lim uubSu
dt

du
 , 

where u is the proportion of the population that is urban, S is per capita surplus produced 
with the given level of the World System's technological development, b is a constant, and 
ulim is the maximum possible proportion of the urban population. Note that this model im-
plies that during the blow-up regime of the ‘Malthusian-Kuznetsian’ era, the hyperbolic 
growth of world urbanization must have been accompanied by a quadratic-hyperbolic 
growth of the urban population of the world, which is supported by our empirical tests (see 
Figs 8–9).  
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Fig. 8. World Megaurbanization Dynamics (% of the world population living in cities 

with > 250 thousand inhabitants), 10000 BCE – 1960 CE: the fit between 
predictions of the hyperbolic model and empirical estimates  

Note: R = 0.987, R2 = 0.974, p << 0.0001. The black dots correspond to Chandler's (1987) estimates, UN 
Population Division (2014), Modelski (2003), and Gruebler (2006). The grey solid line has been 
generated by the following equation:  

)1990(

403.012

t
ut


 . 

The best-fit values of parameters С (403.012) and t0 (1990) have been calculated with the least squares 
method. For comparison, the best fit (R2) obtained here for the exponential model is 0.492. 

 
Fig. 9. Dynamics of World Urban Population Living in Cities with more than 250,000 

Inhabitants (mlns), 10000 BCE – 1960 CE: the fit between predictions of 
the quadratic-hyperbolic model and the observed data  

Note: R = 0.998, R2 = 0.996, p << 0.0001. The black markers correspond to estimates of Chandler (1987) 
and UN Population Division (2014). The grey solid line has been generated by the following equation:  

2)2008(

912057.9

t
U t


 . 

The best-fit values of parameters С (912057.9) and t0 (2008) have been calculated with the least squares 
method. For comparison, the best fit (R2) obtained here for the exponential model is 0.637. 
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Within this context it is hardly surprising that the general macro dynamics of the size of 
the largest settlement within the World System is also quadratic-hyperbolic (see Fig. 10).  

 
Fig. 10. Dynamics of Size of the Largest Settlement of the World (thousands of 

inhabitants), 10000 BCE – 1950 CE: the fit between predictions of the 
quadratic-hyperbolic model and the observed data  

Note: R = 0.992, R2 = 0.984, p << 0.0001. The black markers correspond to estimates of Modelski (2003) 
and Chandler (1987). The grey solid line has been generated by the following equation:  

2max )2040(

573104020618.

t
U t 

 . 

The best-fit values of parameters С (104020618.5) and t0 (2040) have been calculated with the least 
squares method. For comparison, the best fit (R2) obtained here for the exponential model is 0.747. 

As has been demonstrated by cross-cultural anthropologists (see, e.g., Naroll and Divale 
1976; Levinson and Malone 1980: 34), for pre-agrarian, agrarian, and early industrial cul-
tures the size of the largest settlement is a rather effective indicator of the general soci-
ocultural complexity of a social system. This, of course, suggests that in the ‘Malthusian-
Kuznetsian’ era the World System's general sociocultural complexity also increased, in  
a generally quadratic-hyperbolic way. 

As we have noted in the beginning, the dynamics of marine biodiversity is strikingly 
similar to the population dynamics in China, the country with the best-known demograph-
ic history.  

The similarity probably stems from the fact that both curves are produced by the inter-
ference of the same three components (general hyperbolic trend, as well as cyclical and 
stochastic dynamics). In fact, there is a lot of evidence that some aspects of biodiversity 
dynamics are stochastic (Raup et al. 1973; Sepkoski 1994; Markov 2001a; Markov 2001b; 
Cornette and Lieberman 2004), while others are periodic (Raup and Sepkoski 1984; Rohde 
and Müller 2005). On cyclical and stochastic components of the long-term population dy-
namics of China (as well as other complex agrarian societies) see, e.g., Korotayev and 
Khaltourina 2006; Korotayev, Malkov, and Khaltourina 2006b; Chu and Lee 1994; 
Nefedov 2004; Turchin 2003, 2005a, 2005b; Turchin and Korotayev 2006; Turchin and 
Nefedov 2009; Usher 1989; Komlos and Nefedov 2002; Grinin, Korotayev and Malkov 
2008; Grinin et al. 2009; Grinin 2007c; Korotayev 2006; Korotayev, Khaltourina, and 
Bozhevolnov 2010; Korotayev et al. 2010; van Kessel-Hagesteijn 2009; Abel 1980; 
Braudel 1973; Goldstone 1991; Grinin, Korotayev 2012 etc.).  
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In fact, similarly to what we have observed with respect to the world population dy-
namics, even before the start of its intensive modernization, the population dynamics of 
China was characterized by a pronounced hyperbolic trend – as we can see below (see 
Figs 11 and 12), the hyperbolic model describes traditional Chinese population dynamics 
much more accurately than either linear or exponential models do:  

 
Fig. 11. Population Dynamics of China (million people), 57–1851 CE: fit with linear 

and exponential models  
Note: based on calculations in Korotayev, Malkov, and Khaltourina 2006b: 47–88.  

 
Fig. 12. Population Dynamics of China (million people), 57–1851 CE: fit with a hy-

perbolic model  

The hyperbolic model turns out to describe mathematically the population dynamics of 
China in an especially accurate way with respect to the modern period (see Fig. 13). 
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Fig. 13. Population Dynamics of China (million people), 57–2003 CE: fit with  

a hyperbolic model 
Note: based on calculations in Korotayev, Malkov, and Khaltourina 2006b: 47–88.  
 
In a rather similar way the hyperbolic model turns out to describe the marine biodiversity 
(measured by number of genera) through the Phanerozoic much more accurately than the 
exponential one (see Fig. 14): 

 
Fig. 14. Global Change in Marine Biodiversity (Number of Genera, N) through 

Phanerozoic 
Note: based on empirical data surveyed in Markov and Korotayev (2007). 

When measured in terms of species number the fit between the empirically observed ma-
rine biodiversity dynamics and the hyperbolic model becomes even better (see Fig. 15):  
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Fig. 15. Global Change in Marine Biodiversity (Number of Species, N) through 

Phanerozoic  
Note: based on empirical data surveyed in Markov and Korotayev 2007b. 

The hyperbolic model describes the continental biodiversity in an especially accurate way 
(see Fig. 16).  

 
Fig. 16. Global Change in Continental Biodiversity (Number of Genera, N) through 

Phanerozoic 
Note: based on empirical data surveyed in Markov and Korotayev 2007b. 

However, the highest fit between the hyperbolic model and the empirical data is observed when 
the hyperbolic model is used to describe the dynamics of total (marine and continental) global 
biodiversity (see Fig. 17).  
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Fig. 17. Global Change in Total (Marine + Continental) Biodiversity (Number of 

Genera, N) through Phanerozoic  
Note: based on empirical data surveyed in Markov and Korotayev 2007b. 

As we see, the hyperbolic dynamics is most prominent when both marine and continental 
biotas are considered together. This fact can be interpreted as a proof of the integrated na-
ture of the biosphere. 

But why throughout the Phanerozoic did the global biodiversity tend to follow the hy-
perbolic trend (similarly to what we observed within social World System in general and 
China in particular)?  

As we have noted above, in macrosociological models, the hyperbolic pattern of the 
world population growth arises from a non-linear second-order positive feedback (more or 
less identical with the mechanism of collective learning) between the demographic growth 
and technological development (more people – more potential inventors – faster techno-
logical growth – the carrying capacity of the Earth grows faster – faster population 
growth – more people – more potential inventors, and so on). 

Based on the analogy with macrosociological models and diverse paleontological data, 
we suggest that the hyperbolic character of biodiversity growth can be similarly accounted 
for by a non-linear second-order positive feedback10 between the diversity growth and 
community structure complexity (more genera – higher alpha diversity – the communities 
become more stable and ‘buffered’– average life span of genera grows; extinction rate de-
creases – faster diversity growth – more genera – higher alpha diversity, and so on). 

The growth of genus richness through the Phanerozoic was mainly due to the increase 
of average longevity of genera and gradual accumulation of long-lived (stable) genera in 
the biota. This pattern reveals itself in the decrease of extinction rate. Interestingly, in both 
biota and humanity, growth was facilitated by the decrease in mortality rather than by the 
increase in birth rate. The longevity of newly arising genera was growing in a stepwise 
manner. The most short-lived genera appeared during the Cambrian; more long-lived gen-
era appeared in Ordovician to Permian; the next two stages correspond to the Mesozoic 
and Cenozoic (Markov 2001a, 2002).We suggest that diversity growth can facilitate the 
increase in genus longevity via the progressive stepwise changes in the structure of com-
munities. 

                                                           
10 One wonders if it cannot be regarded as a (rather imperfect) analogue of the collective learning mechanism that plays 

such an important role within the social macroevolution.  
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Most authors agree that there were three major biotic changes that resulted in funda-
mental reorganization of community structure during the Phanerozoic: Ordovician radia-
tion, end-Permian extinction, and end-Cretaceous extinction (Bambach 1977; Sepkoski et 
al. 1981; Sepkoski 1988, 1992; Markov 2001a; Bambach et al. 2002). Generally, after 
each major crisis the communities became more complex, diverse and stable. The stepwise 
increase of alpha diversity (average number of species or genera in a community) through 
the Phanerozoic was demonstrated by Bambach (1977) and Sepkoski (1988). Although 
Powell and Kowalewski (2002) argued that the observed increase in alpha diversity might 
be an artifact caused by several specific biases that influenced the taxonomic richness of 
different parts of the fossil record, there is evidence that these biases largely compensated 
each other, so that the observed increase in alpha diversity was probably underestimated 
rather than overestimated (Bush and Bambach 2004).  

Another important symptom of progressive development of communities is the in-
crease in evenness of distribution of species (or genus) abundances. In the primitive, pio-
neer or suppressed communities, this distribution is strongly uneven (community is over-
whelmingly dominated by a few very abundant species). In more advanced, climax or 
flourishing communities, this distribution is more even (Magurran 1988). The former type 
of community is generally more vulnerable. Evenness of distribution of species richness in 
communities increased substantially during the Phanerozoic (Powell and Kowalewski 
2002; Bush and Bambach 2004). Most probably there was also an increase in habitat utili-
zation, total biomass and rate of trophic flow in biota through the Phanerozoic (Powell and 
Kowalewski 2002).  

The more complex the community, the more stable it is due to the development of ef-
fective interspecies interactions and homeostatic mechanisms based on the negative feed-
back principle. In a complex community, when the abundance of a species decreases, 
many factors arise that facilitate its recovery (e.g., there will be more food and fewer pred-
ators). Even if a species becomes extinct, its vacant niche may ‘recruit’ another species, 
most probably a related one that may acquire morphological similarity with its predecessor 
and thus, the taxonomists will assign it to the same genus. So a complex community can 
facilitate the stability (and longevity) of its components, such as niches, taxa and mor-
photypes. This effect reveals itself in the phenomenon of ‘coordinated stasis’: the fossil 
record shows many examples of persistence of particular communities for many million 
years while the rates of extinction and taxonomic turnover are minimized (Brett et al. 
1996, 2007).  

Selective extinction leads to accumulation of ‘extinction-tolerant’ taxa in the biota 
(Sepkoski 1991b). Although there is evidence that mass extinctions can be non-selective in 
some aspects (Jablonski 2005), they are obviously highly selective with respect to the abil-
ity of taxa to endure unpredictable environmental changes. This can be seen, for instance, 
from the selectivity of the end-Cretaceous mass extinction with respect to the time of the 
first occurrence of genera. In younger cohorts the extinction level was higher compared to 
the older cohorts (see Markov and Korotayev 2007a: Fig. 2). The same pattern can be ob-
served during the periods of ‘background’ extinction as well (Markov 2000). This means 
that genera differ in their ability to survive the extinction events, and that in the course of 
time the extinction-tolerant genera accumulate in each cohort. Thus, taxa generally be-
come more stable and long-lived in the course of evolution, apart from the effects of 
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communities. The communities composed of more stable taxa would be, in turn, more sta-
ble themselves, thus creating a positive feedback.  

The stepwise change of dominant taxa plays a major role in biotic evolution. This pat-
tern is maintained not only by the selectivity of extinction (discussed above), but also by 
the selectivity of the recovery after crises (Bambach et al. 2002). The taxonomic structure 
of the Phanerozoic biota was changing in a stepwise way, as demonstrated by the concept of 
three sequential ‘evolutionary faunas’ (Sepkoski 1992). There were also stepwise changes in 
the proportion of major groups of animals with different ecological and physiological parame-
ters. There was a stepwise growth in proportion of motile genera compared to non-motile; 
‘physiologically buffered’ genera compared to ‘unbuffered’, and predators compared to prey 
(Bambach et al. 2002). All these trends should have facilitated the stability of communities 
(e.g., diversification of predators implies that they become more specialized; a specialized 
predator regulates its prey's abundance more effectively than a non-specialized predator). 

There is also another possible mechanism of the second-order positive feedback be-
tween the diversity and its growth rate. Recent research has demonstrated a shift in typical 
relative-abundance distributions in paleocommunities after the Paleozoic (Wagner et al. 
2006). One possible interpretation of this shift is that the community structure and the in-
teractions between species in the communities became more complex. In the post-
Paleozoic communities, new species probably increase ecological space more efficiently, 
either by facilitating opportunities for additional species or by niche construction (Wagner 
et al. 2006; Solé et al. 2002; Laland et al. 1999). This possibility makes the mechanisms 
underlying the hyperbolic growth of biodiversity and human population even more similar, 
because the total ecological space of the biota is analogous to the ‘carrying capacity of the 
Earth’ in demography. As far as new species can increase ecological space and facilitate 
opportunities for additional species entering the community, they are analogous to the ‘in-
ventors’ of the demographic models whose inventions increase the carrying capacity of the 
Earth. 

Exponential and logistic models of biodiversity imply several possible ways in which 
the rates of origination and extinction may change through time (Sepkoski 1991a). For 
instance, exponential growth can be derived from constant per-taxon extinction and origi-
nation rates the latter being higher than the former. However, actual paleontological data 
suggest that origination and extinction rates did not follow any distinct trend through the 
Phanerozoic, and their changes over time look very much like chaotic fluctuations (Cor-
nette and Lieberman 2004). Therefore, it is more difficult to find a simple mathematical 
approximation for origination and extinction rates than for the total diversity. In fact, the 
only critical requirement of the exponential model is that the difference between the origi-
nation and extinction through time should be proportional to the current diversity level:  

(No −Ne)/Δt ≈ kN,                (11) 
where No and Ne are the numbers of genera with, respectively, first and last occurrences 
within the time interval Δt, and N is mean diversity level in the interval. The same is true 
for the hyperbolic model. It does not predict the exact way in which origination and ex-
tinction should change, but it does predict that their difference should be roughly propor-
tional to the square of the current diversity level:  

(No −Ne)/Δt ≈ kN2.                (12)  
In demographic models discussed above, the hyperbolic growth of the world population 
was not decomposed into separate trends of birth and death rates. The main driving force 
of this growth is presumably the increase of the Earth's carrying capacity and the way this 
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capacity is realized – either by decreasing death rate, or by increasing birth rate, or both – 
depends upon many factors and may vary from time to time.  

The same is probably true for biodiversity. The overall shape of the diversity curve 
depends mostly on the differences in the mean rates of diversity growth in the Paleozoic 
(low), Mesozoic (moderate), and Cenozoic (high). The Mesozoic increase was mainly due 
to lower extinction rate (compared to the Paleozoic), while the Cenozoic increase was 
largely due to higher origination rate (compared to the Mesozoic) (see Markov and Koro-
tayev 2007a: 316, Figs 3a, 3b). This probably means that the acceleration of diversity 
growth during the last two eras was driven by different mechanisms of positive feedback 
between diversity and its growth rate. Generally, the increment rate ((No −Ne)/Δt) was 
changing in a more regular way than the origination rate No/Δt and extinction rate Ne/Δt. 
The large-scale changes in the increment rate correlate better with N2 than with N (Ibid.: 
figs 3c and 3d), thus supporting the hyperbolic rather than the exponential model. 

Conclusion  
In macrosociological models the hyperbolic pattern of the world population growth arises 
from a non-linear second-order positive feedback between the demographic growth and 
technological development (more people – more potential inventors – faster technological 
growth – the carrying capacity of the Earth grows faster – faster population growth – more 
people – more potential inventors, and so on, which is more or less identical with the 
working of the collective learning mechanism). Based on the analogy with macrosociolog-
ical models and diverse paleontological data, we suggest that the hyperbolic character of 
biodiversity growth can be similarly accounted for by a non-linear second-order positive 
feedback between the diversity growth and community structure complexity (which sug-
gests the presence within the biosphere of a certain analogue of the collective learning 
mechanism). The feedback can work via two parallel mechanisms: 1) decreasing extinc-
tion rate (more taxa – higher is the alpha diversity, or mean number of taxa in a communi-
ty – communities become more complex and stable – extinction rate decreases – more 
taxa, and so on), and 2) increasing origination rate (new taxa facilitate niche construction; 
newly formed niches can be occupied by the next ‘generation’ of taxa). The latter makes 
the mechanisms underlying the hyperbolic growth of biodiversity and human population 
even more similar, because the total ecospace of the biota is analogous to the ‘carrying 
capacity of the Earth’ in demography. As far as new species can increase ecospace and 
facilitate opportunities for additional species entering the community, they are analogous 
to the ‘inventors’ in the demographic models whose inventions increase the carrying ca-
pacity of the Earth. The hyperbolic growth of the Phanerozoic biodiversity suggests that 
‘cooperative’ interactions between taxa can play an important role in evolution, along with 
generally accepted competitive interactions. Due to this ‘cooperation’ (~ ‘collective learn-
ing’?), the evolution of biodiversity acquires some features of a self-accelerating process. 
The same naturally refers to cooperation/collective learning as regards the global social 
evolution. The discussed above suggests that we can trace rather similar macropatterns 
within both the biological and social phases of Big History that produce rather similar 
curves in diagrams and that can be described in rather accurate way with rather simple 
mathematical models.  
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