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Abstract 

This paper presents a cliometric application of fractional integrated pro-
cesses to socio-economic time series for France in the 19th and 20th centuries. 
The analysis leads to a significant result: no short- or long-term cycle ap-
pears as the dominant constituent. As in the myth of Sisyphus, the boulder 
seems to be at the bottom of the hill again! 

Keywords: economic growth, cliometrics, fractional integration, long cy-
cles, long memory, France. 

Introduction 

The dream of all cycle theorists is to develop a general theory so well that it 
could serve as a code translating the meaning of present forces into terms of 
future movements. Imagine, how simple the life of an economist would be if 
he could refer the symptoms of the past and current economic situations to 
a handbook, which would diagnose what was wrong with the economy and 
prescribe what should be done to restore it to health. But this remains only 
a dream. Our knowledge of the complex body economic is still too imperfect 
to be codified into a handbook. The best we can do is to synthesise existing 
theories of why the circular flow of socio-economic moves in the rhythms 
that we call long movements of the Kondratieff type, Kuznets cycles, Juglar 
cycles etc. 

A cycle is a regular, self-repeating fluctuation of relatively fixed length 
and amplitude, often existing around some other trend. Economic cycles are 
not precise. They are self-repeating, but they vary in amplitude and to some 
degree in length. An economic cycle consists of expansion occurring at about 
the same time in many economic activities, followed by a similar general re-
cession, contractions and revivals which emerge at the expansion phase of the 
next cycle. The cycle is not married to a calendar. But there is a systematic, 
alternating sequence of cause and consequence that takes the economy 
through prosperity and depression. 
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The short-term and intermediate-term economic cycles, noted by C. Juglar 
(1889) and S. Kuznets (1930) were easily perceptible fluctuations created by 
oversupply or excess demand for products, services, or money. C. Juglar was 
the first to correlate clearly perceptions of economics, statistics, and history to 
use them in the understanding of mechanisms of alternating prosperity and re-
cession. C. Juglar analysed banking figures, interest rates, prices, marriage 
rates, and other evidence to support his notion of these major crises. He be-
lieved that he had discovered a single wave underlying the movements of world 
economies. More widely accepted in recent years is the 15- to 25-year swing in 
economic growth rates uncovered by Nobel laureate S. Kuznets. The cycle is 
more evident in the United States than elsewhere. M. Abramovitz recognises 
the Kuznets cycle as associated with population growth and immigration 
(Abramovitz 1965). Most economists hold that this cycle was material only for 
the period from 1840 to 1914. 

There is another type of cycle, less perceptible because its duration is 
longer, its dynamics is less obvious, and its origins are less well defined. 
Economists refer to it as the long wave or long cycle of the Kondratieff type. 
More than 100 years ago, H. Clarke described this ‘longer cycle’, which was 
different from others affecting the economies of Europe. In 1847 he published 
a paper in the British Railway Journal called Physical Economy describing 
fluctuation between 1793 and his own time. H. Clarke offered no explanations. 
He merely recorded the figures. At the beginning of the 20th century, several 
economists suggested that a long economic cycle was identifiable: G. Cassel, 
J. van Gelderen, A. Spiethoff, S. De Wolff etc. (Woytinsky 1931). 

Thus, the long cycle that bears the name of N. Kondratieff was not origi-
nated by him. Describing the origins of his theory, N. Kondratieff wrote that 
he arrived at the hypothesis concerning the existence of long cycles in 1919–
1920. Without going into a special analysis, he formulated his own thesis for 
the first time in his study The World Economy and Economic Fluctuations in 
the War and Post-War Period. In winter and spring of 1925, he wrote a spe-
cial study Long Business Cycles published in Moscow by the Institute of Con-
juncture. N. Kondratieff worked out his theories on the basis of wholesale 
prices, interest on British consoles and French rents, deposits at French sav-
ing banks, French trade, per capita coal, wage data of English farm and textile 
workers and French coal miners, pig-iron production in the United States, 
coal consumption in France, gold production, and other production series 
from 1780 to 1926 (Wagenführ 1929). He used regression analyses of quanti-
fied data and a nine-year moving average to eliminate minor fluctuations 
(Kondratieff 1926). With his development of a theory of investment cycles, 
N. Kondratieff was the first to put forward the idea that long cycles originated 
in the very functioning of the economic system. An increase in saving in-
creases the possibility for investing available capital and causes the long up-
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ward period. Reduction in saving reduces investment and causes the downward 
swing. 

J. A. Schumpeter (1939) enriched the field of interpretation of long cycles 
by introducing the role of innovations. Grouped in time and concentrated in 
a few branches of industry, innovations govern regular cycles. They first tend 
to attract capital, and then the diffusion of the innovations throughout the econ-
omy modifies the economic balance and increases the risk of failure for the 
next innovations. The economy must use a recession process to assimilate 
the progress of the upward phase before the system approaches equilibrium 
again and allows for new innovations. 

From 1945 to 1970, in spite of notable work by G. Imbert (1959) and  
U. Weinstock (1964), less attention was paid to research on long movements of 
the economy because of the continuous growth observed in the economies 
of developed countries and the dominance of Keynesian thinking. With the 
change of this situation in the early 1970s and the renewal of research on long 
cycles, the theories resulting from the work of J. A. Schumpeter have been cir-
culating more widely (Mensch 1977; Petzina and Roon 1981; Kleinknecht 
1987). But, since that time, one of the greatest difficulties encountered in the 
study of long cycles remains: the main adopted statistical approach (trend-
deviations and moving averages) includes the production of more or less artifi-
cial phenomena.  

Spectral analysis,1 often presented as the most interesting of the procedures 
for detecting cycles, is no exception to the rule. Statistical series are often not 
long enough. They do not meet stationarity requirements and the elimination of 
the trend may affect the identification of the peaks. Spectral analysis thus in-
volves a regularity of movements that is not verified and which, in addition, is 
not essential in affirming that they exist. In fact, the spectral analysis method 
cannot truly prove or refute the existence of socioeconomic cycles. The non-
pertinent nature of the method returns one to the more general problem of the 
non-neutrality of the method used with regard to the obtained results. Error in 
perspective is caused by the fact that the narrower the ‘statistical window’, the 
more chance there is of showing short cycles. Likewise, a broad ‘statistical 
window’ will accentuate long movements. From the theoretical point of view, 
one might consider that the problem could be solved by means of a ‘statistical 
window’ covering the longest known movement in socioeconomic life, that is 
to say the Kondratieff (60 years). However, even in such a case, error in per-
spective would not be ruled out as long movements may be linked to even 
longer movements. 

                                                           
1 Spectral analysis is based on the theory of stochastic processes. The central hypothesis is that 

a time series consists of a large number of sinusoidal components with different frequencies (uni-
variate spectral analysis). It makes it possible to divide a particular category of series into a set of 
oscillations with different frequencies and then to show the links between the components with 
the same frequency in the various series examined (cospectral or bivariate spectral analysis). 
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In this paper we propose an alternative methodology. Our method was first 
of all determined by the search for the greatest possible objectivity in the ob-
servation of time series and then by the possibility of applying it to a large 
number of series. This two-fold requirement was dictated by the need to antici-
pate the criticism generally aimed at statistical studies on long movements in 
the economy, especially long waves of the Kondratieff type. 

Section 1 presents the fractional integrated processes which are the main 
models used to describe long memory phenomena. Section 2 briefly defines the 
concept of fractional integration, shows the fundamental properties and provides 
a short summary of the estimation methods. Section 3 consists of a survey of their 
extensions in order to model long term cycles. Section 4 presents an application 
to socio-economic series for France in the 19th and twentieth centuries. 

1. Fractional Integrated Processes 
The class of fractional integrated processes is an extension of the class of 
ARIMA processes stemming from Box and Jenkins methodology. One of the 
originalities is the explicit modelling of the long term correlation structure.2 

According to the values of parameters, these processes will possess the 
long term dependence property or long memory introduced by Hurst (1957: 
494) and Mandelbrot and Van Ness (1968: 422–437).  

Let xt, t = 1…n be a time series and )(k  – its autocorrelation function: 
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Fractional integrated processes can be used to represent such correlation 
structures. These models are defined from the fractional differentiation operator 
[1 - Bd] where B is the usual backshift operator: Bkxk = xt-k. 

The fractional operator is broken down using a binomial series: 
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This operator makes it possible to define fractional integrated processes. It 
is assumed that process xt, t = 1…n (assumed to be centred for the purpose of 
simplicity, E[x] = 0) follows an Auto Regressive Fractional Integrated Moving 
Average (ARFIMA) process if: 
                                                           
2 In the traditional methodology long-term structures are often likened to non-stationarity and so fil-

tered/eliminated from the first stage of the processing treatment. However, it is obvious that the 
use of an unsuitable filter can introduce an artificial correlation structure into the series; this is 
called over-differentiation (Granger and Joyeux 1980: 1–15). 
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where tu  is a usual ARMA(p,q) process:  

                                           tqtp BuB  )()(  ,                                             (3) 

where t  is white noise with zero mean and variance 2
 .  

We assume that tu  verifies the stationarity and invertibility conditions. 

This assumption concerning tu  is necessary to establish the following proper-
ties.  

It can be demonstrated that: 
 the process xt is stationary if 2/1d ; 
 the process xt is invertible if 2/1d . Odaki (1993: 703–709) spread this 

interval to 1d  by using a weak invertibility concept; 
 the stationary process xt has long memory if 2/10 d . 
For 02/1  d , the process is always characterized by the slow decay of 

autocorrelation but it does not possess the long memory property (the autocor-
relations have alternate signs). In this case it is said that the series is ‘antipersis-
tent’. This behaviour is often associated with an over-differentiation of the se-
ries by the first difference filter. 

The stationarity property is not verified for 12/1 d . However, the asymp-
totic expression of the infinite MA decomposition coefficients ever tends to 
zero. This case is called ‘non-stationary mean-reverting’. The effects of a ran-
dom shock will tend to decrease with time, unlike the unit root case.3 

In the latter case, the first differentiated series is antipersistent. Fig. 1 
shows the different properties according to the values of d. 

 

Fig. 1. Properties of a fractional integrated process 

When 1/2< d < 1, much work (Diebold and Rudebush 1991: 155–160) shows that 
the usual unit root tests display a bias in favour of the hypothesis ‘d = 1’. This is 

                                                           
3 The unit root case (i.e. d = 1) is also called infinite memory. In such a case the influence of 

a shock lasts indefinitely. This is also true for d > 1. 
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not very surprising because only the two cases d = {0,1} are considered in the 
‘traditional unit-root’ framework. In contrast, the fractional framework allows 
a wider range of long-term patterns: all the cases d  [–1, 1.5]. These processes 
are therefore very useful in the study of economic time series, which are 
known to display complicated long-term movements. 

Hosking (1981: 165–176) demonstrated the fundamental properties of the 
ARFIMA(p,d,q) process. Asymptotically, these properties are given by those 
of the ARFIMA(0,d,0). Only the latter are presented here. 

The stationary ARFIMA(0,d,0) process allows an infinite MA representa-
tion: 

                                             


0k
t

k
kt Bx  ,                                             (4) 

where 1
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k kckddk  (c1 positive constant). The coefficients of 

MA() development decay at a hyperbolic rate are different from the expo-
nential rate characteristic of ARMA processes. The influence of a random 
shock will tend to vanish with time but at a relatively low speed. 

The spectral density of the ARFIMA(0,d,0) process is: 
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2.~)(,0    (c2 positive constant). The spectral density has 

a peak at zero frequency. Such a spectral shape is often connected with the 
presence of a non-stationary component. But the stationarity property is veri-
fied here. There is a risk of interpretation error when such a spectral shape is 
automatically associated with the non-stationarity of the series. 

The algebraic expression of the ARFIMA(p,d,q) autocorrelation function 
is complex and of limited interest. Hosking (1981: 165–176) demonstrates 

that its asymptotic behaviour is 12
3

dkkc  (c3 positive constant). One will find 

decay at a hyperbolic rate characteristic of fractional integrated processes.  
It can be noted that if 2/1d , applying the first difference filter to the series, 

produces a series characterized by a fractional integration coefficient d
~

 for 

which one can verify: 1
~

dd . 
Then one can study differentiated series and deduce the properties of the 

raw series. Thus fractional integrated processes can model not only the phe-
nomena of long memory but can also be used to implement a tool for time se-
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ries analysis. For this, Beran (1999) proposes a model called SEMIFAR for 
the combined modelling of deterministic long-term trends (treated by a non-
parametric approach) and stochastic long-term structures (processed by the 
parametric fractional model presented here). 

2. An Overview of Estimation Techniques 

2.1. Semiparametric Estimation 
This method is used to estimate the value of the fractional integration coeffi-
cient by means of a simple procedure. The estimator is referred to as being 
‘semiparametric’ because it does not assume a full parametric model for the 
short-term structure ut but only a general hypothesis. It is assumed that the 

spectral density near zero frequency is 0  if 2.)(   dcf , c0 . Long-

term information is only used in the computation. In terms of spectral density, 
only frequencies near zero are used. 

Obviously, the non-consideration of a possible short-term structure leads 
to a considerable risk of bias. 

2.2. The Geweke and Porter-Hudak (GPH) estimator 
After some transformations, the spectral density of the ARFIMA(p,d,q) pro-
cess is: 
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where )(nI  is the periodogram of the series tx  (estimator of the spectral 

density at the frequency )exp)(:/2 1
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If only the first m frequencies are used, with m such that 

10,)(  nngm , the influence of the short-term component can be consid-

ered constant and d can be estimated with a linear regression of 

))(ln( jnj IY   from the deterministic regressor )2/(sin4 2
jjX  . It can be 

demonstrated that the estimator d̂ obtained is asymptotically normal and its 
variance is known (see Agikloglou, Newbold, and Wohar 1993: 235–246; 
Chen, Abraham, and Peiris 1994: 473–487; Cheung 1993: 331–345; Hassler 
1994: 19–30; Hurvich and Ray 1995: 17–42; Reisen 1994: 335–350).4 

A significance test of the fractional integration coefficient can be set up: 

                                     









6
,0)ˆ(


N
d

ddm .                                        (7) 

                                                           
4 For a discussion of the choice of the spectral window and its effects on the estimator as well as the 

bias generated by the presence of a short-term component. 



Claude Diebolt 127 

We note that in expression (7) the term
6

 is the asymptotic standard 

error of residuals in the regression discussed above. 
This estimator can be improved if a smoothed periodogram is used in-

stead of In (Hassler 1994: 19–30). Using a particular spectral window, 
Velasco (1999a: 325–371) proposes an estimator of d which can be used on 
non-stationary series. The author proves the consistency of this estimator for 
1/2 < d < 1 and asymptotic normality for 1/2 < d < 3/4:5 
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2.3. Gaussian Semiparametric Estimator 
This semiparametric estimator has been proposed by Robinson (1995: 1630–
1661) and studied by Velasco (1999b: 87–127). 

It belongs to the same logic as the GPH estimator but it is computed by 
minimization of the objective function Q(c,d): 
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As for the GPH estimator, the use of a particular spectral window enables 
direct computation on series such that d < 1 (Velasco 1999a: 87–127). 

2.4. Fully Parametric Methods 
These methods allow the simultaneous estimating of all the parameters of the 
process, the fractional integration coefficient and the parameters of an ARMA 
structure. They are based on the optimization of the likelihood function. 

2.5. Exact Maximum Likelihood Estimator 
The estimator of the exact maximum likelihood proposed by Sowell (1992: 

165–188) is the vector )ˆ,ˆ,ˆ(ˆ   d .  

It maximizes the log-likelihood function )(L : 

                    xRRnL 1 x')2/1()ln()2/1()2ln()2/()(   ,                       (10) 

where R  is the variance-covariance matrix of the process. 

̂  has an asymptotically normal distribution, and the variance matrix of 
parameters is given by the inverse of the information matrix. 

The matrix R used in (8) is a complicated algebraic expression and is dif-
ficult to compute. Moreover, the exact maximum likelihood estimator may be 
biased if the mean of the series used is unknown.  

                                                           
5 See Velasco 1999b: 87–127 for a detailed discussion of the choice of spectral window. 
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2.6. Approximated Likelihood Estimators 
We therefore use methods based on an approximation of the likelihood function. 

The two main available techniques are the spectral approximation of Fox 
and Taqqu (1986: 517–532) and the minimization of the conditional sum of 
squared residuals proposed by Cheung and Baillie (1993: 791–806). 

Asymptotically, these two methods converge on the exact maximum like-
lihood estimator.  

The estimator suggested by Fox and Taqqu is the vector SA̂  which 
maximizes the following expression: 

                             ]
)(

)(
))(2[ln()(

1

1
 




n

j jx

jT
jx

f

I
fL




 .                              (11) 

This expression is easier to use but can display a bias in small samples. 
On the other hand, it is effective when the value of the mean of the process is 
unknown. 

The estimator proposed by Cheung and Baillie is the vector CSS̂  which 
minimizes the quantity: 
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This estimator can easily be modified to introduce an estimator of the 
mean into the parameter vector. It can be developed to take into account 
an heteroskedasticity in the residuals. But it can present a bias, particularly if 
the number of parameters is important or of it is performed in a small sample 
context.  

The three estimators ̂ , SA̂ and CSS̂ possess a normal asymptotic dis-
tribution for d < 1/2, that is in the stationary case. No theoretical result exists 
that enables the computing of ̂  or CSS̂  directly on non-stationary series, as 
it is possible in the semiparametric case. Faced with non-stationarity, the only 
solution is to apply the first differences filter prior to performing the estima-
tion. This removes all problems related to the presence of an unknown con-
stant term (i.e. the mean of first differences is zero). 

3. Generalization of Fractional Integration 
In his paper, Hosking (1981: 165–176) notes that taking the fractional power 
of a second order polynomial makes it possible to describe long-term struc-
tures of periodic shape. Thus, Gray, Zang and Woodward (1989: 233–255) 
proposed the process called Generalized ARMA (GARMA). According to the 
values of the parameters, this process can possess a cyclical and persistent 
structure. Woodward, Chen and Gray (1998: 485–504) extended this model to 
the case in which the series have a k cyclical persistent component. The latter 
model is the most successful shape of fractional integration model. 

Formally, the series ntxt ...1,   process if: 
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with the same notations as above; in particular, ut is a stationary and inver-
tible ARMA(p,q) process. Obviously, the model specification must be such 
that kjjj ...1 . The long-term structure now depends on two parame-

ters. The parameter   indicates the long-term periodicity while parameter d 
is linked to the ‘intensiveness’ of long-term structure. The quantity 

)(cos/2 1    gives the periodicity in temporal terms. If 1 , it can be veri-
fied that the cycle period tends toward infinity (the ARFIMA case). 

It can be demonstrated that (Woodward, Chen, and Gray 1998: 485–504) 
that: 

 the k-GARMA process is stationary if: 

1j  and 2/1jd , or 

(ii) 1j  and kd jj ...1,4/1  ; 

 the k-GARMA process is invertible if: 

1j  and 2/1jd , or 

1j and kd jj ...1,4/1  ; 

 the stationary k-GARMA process will have long memory property if: 

1j and ,2/10  jd  or 

1j  and kd jj ...1,4/10  . 

It can be seen that for k=1 and 1  the process corresponds to an AR-
FIMA(p,2d,q) process. Besides, if ]2/...[0,/2 sjsjj   , one finds the sea-

sonal ARFIMA process proposed by Hassler. 
The spectral density of the k-GARMA process is: 
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22 |~|)(, 2 
  . The spectral den-

sity shows k peaks at the frequencies j . The estimation method proposed 

by Chung6 is based on the minimization of the conditional sum of squared re-
siduals (noted CSS below). 

                                                           
6 The method proposed by Chung concerns simple GARMA processes (k = 1). However, the proofs 

can be extended for k > 1 (Chung 1996a, 1996b). 
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However, parameter estimation of this class of process is delicate. In case 
k = 1, Chung shows that the estimator of   obtained by CSS minimization 
converges at a greater speed than the other parameters. This rules out the use 
of gradient-based methods on the whole set of parameters.7 Therefore it is 
advisable to use an alternative method based on an incremental search (or 
grid-search). This method is very slow if the grid-search corresponds to [–1, 1]. 
It is then more effective to restrict the search interval to a neighborhood of 
frequencies relative to the strongest values of the periodogram. For k = 1, 
Chung demonstrates that the distribution of the estimators of d, as well as 
those of a possible ARMA structure obtained by minimization of the CSS 
function, is normal. Parameter significativity can be tested by a Student sig-
nificance test. Moreover, the author shows that the law of parameter   is 
known and proposes tabulated values ordinary to construct a confidence in-
terval (Chung 1996a). 

We pursue our analysis with the presentation of results stemming from 
our empirical study. 

4. Empirical Study of Long-Term Structures for French 
Socio-Economic Series in the 19th and 20th Centuries 

In this work, studied series are annual data observed over the period 1820–
1996 for France (preceded by the letter F).  

The used series are the GDP (GDP), the total population (POP), school 
population (SCOL), current (DECR) and constant (DECS) educational ex-
penditures. Sources of series in levels are given in Diebolt et al. (2003). 

A preliminary examination of the series shows: 
1) a strong increase of all the series at the end of the observation period 

(from 1950) which will require transformation in logarithmic data. However, 
series are strongly non-stationary and the obtaining of coherent results is dif-
ficult. 

2) the ‘evident non-stationarity’ of transformed series. The differences of 
size between the first and last observations leads to suspecting that the use 
of a model with a long memory runs into the problem of non-stationarity for 
series in levels. 

The autocorrelation functions of level series display high and very 
weakly falling values. Periodograms are concentrated, with very low frequen-

                                                           
7 The estimator of   converges at the rate )1( ||

1  T  or )1(
2  T  while the other parameters 

converge at the usual rate 
2/1

T . The cross terms of the Hessian relative to   parameter will 

therefore quickly tend toward zero. From an analytical point of view, some information matrix 
terms will be infinite. From an empirical point of view, the inversion of the Hessian matrix is 
then impossible. 
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cies. Such observations first lead to developing a test of unit roots (Aug-
mented Dickey and Fuller test). For reasons of conciseness detailed results 
are not presented here. We indicate, however, that for all the studied series, 
the hypothesis of unit root is easily accepted against an alternative of a de-
terministic trend. In some cases, the use of a test strategy of the Hénin-Jobert 
type leads to simultaneously accepting the presence of a unit root and a linear 
deterministic trend on first differences. This result may be at odds with intui-
tion and, naturally, casts a doubt on the validity of the Dickey-Fuller test con-
clusions. The introduction of more elaborate alternatives, for example a trend 
with break, can lead to different results. Of course, the existence of a long-
term structure can lead to a certain number of diagnosis errors (Diebold and 
Ruderbusch 1991: 155–160).  

However that may be, our series of first differences present significant 
short term structures of varying length. At the same time, we note that the use 
of annual data results in diagnosis of a correlation structure is shorter than ten 
years as a short-term structure. 

Statistical methods presented in the previous section are now used to dis-
cuss the shape of the long-term trends in the studied series. Two methods are 
investigated. We first envisage the presence of a long memory component 
with the use of ARFIMA processes. We seek then the presence of a cyclic 
long-term component with GARMA processes. 

4.1. Search for Long Memory 
The estimation method used here is a spectral approximation in the frequency 
domain (Fox and Taqqu 1986: 517–532). This algorithm requires starting va-
lues close enough to the optimal values. In order to produce them, we com-
pute first the GPH estimator and the results are used as the initial values in 
the optimization algorithm. The results are shown in Table 1. 

Table 1. ARFIMA model estimation 

Series dgph ARMA (p,q) dMV ARMA (p,q) 
FGDP 0.29 (1,0) 0.27 (1,0) 

 (3.91)  (3.47)  

FPOP –0.28 (0,5) 0.26 (0,5) 
 (–4.19)  (5.36)  

FDECS 0.50 (5,0) 0.38 (5,0) 
 (7.48)  (6.09)  

FDECR 0.41 (0,0) 0.50 (0,0) 
 (6.16)  (10.58)  

FSCOL 0.29 (0,3) 0.44 (0,1) 
 (4.38)  (5.94)  

 
Note: values in brackets give Student statistics. 
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The stationarization of the series was obtained with first differences and so it 
is advisable to add the value 1 to the numbers below to obtain the values of 
fractional integration coefficient for series in levels.  

For France, all the coefficients are significantly different from zero, posi-
tive for all the series, except for FPOP. This result must be treated with cau-
tion because the GPH estimator is very sensitive to the presence of a short term 
component. Empirically, such a specification error can be suspected if the esti-
mated values vary strongly when different number of ordinates are used in the 
periodogram regression (for different m or ). This seems to occur here.8 We 
verify that the orders of short term components are distinctly lower than those 
obtained after application of a first differences filter only. The maximum like-
lihood procedure confirms the previous results except for the FPOP series, 
which now displays a positive fractional integration coefficient. The short-
term structure is now a MA(5) process for which the first and fifth terms are 
significant. The presence of a ‘troublemaker’ short term component seems 
confirmed. The FDECR series is very close to non-stationarity and presents 
no more short-term structures. All the series are persistent in first differences. 
The short-term components are low for FGDP and FSCOL, non-existent for 
FDECR and of order 5 for FPOP and FDECS. 

The optimization procedure developed on the first differenciated series 
does not give any convergent results. The use of second differences gives an es-
timator close to –1/2. The raw series is therefore fractionally integrated of or-
der approximately equal to 1.6 compared with the order 1.4 obtained in the 
French case. These two series are thus strongly non-stationary. Their correla-
tion structures are largely formed by very long-term components that are dif-
ficult to exploit. This result underlines the difficulty of using current price 
data in a broad temporal framework. All the series show long memory behav-
iour linked to their slowness of adaptation to a shock. At such a level of ag-
gregation, this result is not a surprise. Relatively close forms inside every 
country lead to considering that a long-term relation may exist among these 
variables. As a matter of fact, the similarities between the two countries lead 
us to thinking that the long-term evolution was driven by comparable deter-
minants. 

4.2. Long-Term Cycle Study 

4.2.1. Single Component GARMA Model 
Now we will try to go further in the search for a possible long-term compo-
nent with finite periodicity. This study confirms the previous results (if the 

                                                           
8 The results in Table 1 were obtained with m such as Tm   and  = 0.5. The same computa-

tions were performed for  = 0.6 and 0.7. For reasons of space, they are not presented here but 
are available from the authors.  
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cycle frequency of the dominant long term component is infinite) or to com-
plete them (if frequency is finite). 

Indeed, the presence of a cycle with frequency close to zero but signifi-
cantly different will mislead the estimation procedure of an ARFIMA process 
(overestimation of the short-term part). Furthermore, if we do not find such 
a cycle, checking the relation dARFIMA=2dGARMA obtained by two differ-
ent optimization methods (spectral approximation of the log-likelihood func-
tion for ARFIMA and minimization of the sum of the squared conditional re-
siduals for GARMA), makes it possible to confirm the results presented in the 
previous section. The results are shown in Table 2. No finite cycle appears as 
a dominant long-term structure. Coefficient  is not significantly different 
from 1 in all the series. All the series are persistent in differences. We verify 
the relationship linking the two fractional integration coefficients at least 
roughly. We retain a positive value for the fractional integration coefficient as 
well as a different short-term structure. Orders and values obtained for the 
short-term parameters are very close to the optimal values presented in Table 1. 
The slight differences results from a settlement between the value of coefficient  
d and the variance of the residuals according to the two optimization methods. 

Table 2. Single Component GARMA Estimation 

Series dGARMA  ARMA (p,q) 
FGDP 0,12 

(2,88) 
1  (1,0) 

FPOP 0,13 
(2,37) 

1 (0,5) 

FDECR 0,17 
(3,66) 

1 (5,0) 

FDECS 0,24 
(4,50) 

1 (0,0) 

4.2.2. Two-Component GARMA Model 
To conclude this work, we present the results of the 2-GARMA model esti-
mation. The estimated values of parameters for every series are shown in Ta-
ble 3. The selection of the optimal short-term structure was made by repeat-
ing the estimation procedure for various values of the orders p and q and re-
taining as the optimal model that is relative to the minimal sum of squared  
residuals. 

First of all, we note that the method did not give stable results for the 
FPOP series (value 0 indicates that no model 2-GARMA could satisfactorily 
be fitted on this series). For these series the confidence interval of the pa-
rameter 2  is equal to or is very close to the value 1. If there are effectively 
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two fractional dynamics, they are too close for the method can not discrimi-
nate between them. On the contrary, everything seems to show that there is, 
for these series, only a single fractional component.  

Table 3. 2-GARMA model estimation 

Series 2 d1 2 d2 
FGDP 1 0.26 0.89  0.26 
  (4.27) [0.86,0.92] (2.16) 

FPOP 1 0.01 0.88 0.06 
  (**) [0.76,0.99] (**) 

FDECR 1 0.221 0.78 0.04 
  (6.594) [0.54,0.98] ( 1.45) 

FDECS 1 0.18 0.95 –0.12 
  (2.52) [0.90,0.98] (–1.26) 

FSCOL 1 0.20 0.96 0.08 
  (1.03) [0.92,1] (1.09) 

Notes: 
(i) The values printed in italics are those for which the nullity hypothesis is accepted, the 

values printed in bold italics are those for which a doubt remains. The values printed 
in bold are significant values. 

(ii) The values in brackets give the Student statistic. The values in braces give the confi-
dence interval obtained according to the values tabulated by Chung. 

(iii) The sign ** indicates an algorithm failure to supply results. 

For the other series, the value of the fractional integration coefficient for 
the parameter 2  is fairly close to the value obtained by the estimation of 

the model 1-GARMA. This observation is evidence of the robustness of our 
result. The FGDP series present a persistent structure and a value of pa-
rameter 2  corresponding respectively to a cycle of 7(,4) years and 13(,2) 

years. FDECR, FDECS and FSCOL series also seem to display a short-term 
structure but the fractional integration coefficient is not significant for these 
series.  

However, the estimation results show that a gain in term of the sum of 
squared residuals is brought by the introduction of the second constituent.  
A test with an acceptance probability of 10 % makes it possible to retain 
these variables. So one can accept the presence of a second long term struc-
ture with reserve. They would correspond to cycles of period 9(,8) years for 
FDECS, 9(,2) years for FDECR and 22 years for FSCOL. 

A summary of the obtained results is given in the Table 4. 
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Table 4. Properties of the series 

Series 
Long-term 
structure 

Long-term 
cycle 

Short-term 
structure 

FGDP Unit root and long 
memory 

13 years 1 year (AR) 

FPOP Unit root none 5 years (MA) 
FDECR Unit root and long 

memory 
9 years none 

FDECS Unit root and long 
memory 

20 years 5 years (AR) 

FSCOL Unit root and long 
memory 

22 years 1 year (AR) 

At the current state of knowledge, analysis by fractional integrated processes 
is the most appropriate method for describing the phenomena of long memory 
and, more widely, for identifying and/or clarifying certain theoretical hy-
potheses with view to modelling long-term cyclic movements. 

At the point we have reached, it is therefore possible to shed light on the em-
pirical results mentioned above. The cliometric analysis of educational series, 
economic growth and demography in France in the 19th and 20th centuries leads 
us to a significant result: no long-term cycle appears as the dominant constituent. 
Nevertheless, there are cycles which seem to affect some of the variables that we 
have studied. Others do not show any particular movement.  

In Table 4, we distinguish first of all movements close to the classic cy-
cle of the Juglar type (average duration of which is between 7 and 11 years) 
for the FGDP and FDECR series.  

We then observe for FGDP, FPOP, FDECS and FSCOL series, cycles of 
5 years or less; these are similar to minor cycles of the Kitchin type (average 
duration is 40 months). 

We also note Kuznets type cycles in the FDECS and FSCOL series.  
The latter found a periodicity of about 22 years for a period of a complete os-
cillation of production and 23 years for prices. 

Finally, we have not noticed any cyclicity close to long movements such 
as Kondratieff cycles (whose average duration is between 48 and 60 years)  
(Diebolt and Doliger 2006: 39–47; Metz 2011: 204–238). 

As in the myth of Sisyphus, the boulder is at the bottom of the hill again! 
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